今天给各位分享复合函数求解析式的知识,其中也会对复合函数例题进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
专升本高数考试范围是怎么样的
1、专升本数学考试范围是:函数、极限与连续;导数与微分;中值定理与导数应用;原函数与不定积分概念、不定积分换元法、不定积分分部积分法;定积分及其应用;微分方程;空间解析几何向量代数;多元函数微分学;多元函数积分学;无穷级数。
2、高数一包括:高等数学、线性代数和概率统计;高等数学占60%,线性代数20%,概率论20%。
3、高数二包括:高等数学和线性代数;不考无穷级数、线面积分、概率统计。
4、专升本高数在出题上区别于普通高校的期末考试题及其他测试,也就是说每道题都只考单独的一个知识点,不具有综合性,题量大,但题目简单,只要你学会了一个知识点,就能保证会做一道题。
5、专升本数学所有考点分为8大模块:
6、第一模块:函数、极限和连续。包括四个内容:(1)高数主要研究对象–函数(2)研究工具–极限(3)无穷小量、无穷大量(4)函数的连续性。
7、第二模块:一元函数的微分学。重要内容:(1)导数与微分(2)微分中值定理与洛必达法则(3)一元函数求导(4)函数的单调性与极值。
8、第三模块:积分分为:定积分与不定积分。解不定积分或者定积分的方法:(1)直接法(2)分布积分法(3)换元法。
9、第四模块:常微分方程分为:一阶微分方程、高阶微分方程和二阶线性微分方程;一阶微分方程考的比较多。
10、第五模块:向量代数、空间解析几何。过渡章节,为后面学习二元函数的微积分打基础。
11、第六模块:多元函数的微分学。多元微分(多元函数求偏导)和(复合函数和隐函数的微分法)、(多元函数的极值应用)。
12、第七模块:多元函数积分学重点掌握二重积分和曲线积分。
13、第八模块:无穷极数工程中的近似计算会用到。包括:竖向极数和幂级数。
专升本函授高等数学讲解:函数、极限和连续的考点有哪些
高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。工科、理科、财经类研究生考试的基础科目。那么,专升本函授高等数学讲解:函数、极限和连续的考点有哪些?
本大纲适用于工学理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考生。
总要求考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方**确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。
函数的定义函数的表示法分段函数隐函数
幂函数指数函数对数函数三角函数反三角函数
(1)理解函数的概念。会求函数的表达式、定义域及函数值。会求分段函数的定义域、函数值,会作出简单的分段函数的图像。
(2)理解函数的单调性、奇偶性、有界性和周期性。
(3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。
(4)熟练掌握函数的四则运算与复合运算。
(5)掌握基本初等函数的性质及其图像。
(7)会建立简单实际问题的函数关系式。
唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理
函数在一点处极限的定义左、右极限及其与极限的关系趋于无穷时函数的极限函数极限的几何意义
无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的阶
(1)理解极限的概念(对极限定义中“”、“”、“”等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解极限的有关性质,掌握极限的四则运算法则。
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。
(4)熟练掌握用两个重要极限求极限的方法。
函数在一点处连续的定义左连续与右连续函数在一点处连续的充分必要条件函数的间断点及其分类
连续函数的四则运算复合函数的连续性反函数的连续性
有界性定理最大值与最小值定理介值定理(包括零点定理)
(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。
(2)会求函数的间断点及确定其类型。
(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。
自考/成考有疑问、不知道如何总结自考/成考考点内容、不清楚自考/成考报名当地政策,点击底部咨询官网,免费领取复习资料:https://www.87dh.com/xl/
重庆专升本数学考试范围
1、理解函数概念,知道函数的表示法;会求函数的定义域及函数值。
2、掌握函数的奇偶性、单调性、周期性、有界性。
3、理解复合函数与反函数的定义,会求单调函数的反函数。
4、掌握基本初等函数的性质与图像,了解初等函数的概念。
5、理解极限概念及性质,掌握极限的运算法则。
6、理解无穷小量与无穷大量的概念及两者的关系,掌握无穷小量的性质和无穷小量的比较。
7、了解夹逼准则与单调有界准则,掌握两个重要极限:
8、理解函数连续与间断的定义,理解函数间断点的分类,会利用连续性求极限,会判别函数间断点的类型。
9、理解闭区间上连续函数的有界性定理、最值定理、介值定理,并会用上述定理推证一些简单命题。
10、理解导数的定义及几何意义,会根据定义求函数的导数。
11、理解函数的可导与连续的关系。
12、熟练掌握基本初等函数的导数公式、导数的四则运算法则、复合函数求导法则、隐函数求导法、对数求导法及参数方程求导法,了解反函数的求导法则。
13、了解高阶导数的概念,熟练掌握初等函数的一阶和高阶导数的求法。
14、理解微分的定义、可微与可导的关系,了解微分的四则运算法则及一阶微分形式的不变性;会求函数的微分。
15、理解罗尔(Rolle)定理、拉格朗日中值(Lagrange)定理,了解柯西(Cauchy)中值定理和泰勒(Taylor)中值定理。会用罗尔定理证明方程根的存在性,会用拉格朗日中值定理证明一些简单不等式。
16、熟练掌握用洛必达(L’Hospital)法则求未定式的极限。
17、理解函数极值的概念、极值存在的必要条件及充分条件。
18、会求函数的单调区间和极值,会求函数的最大值与最小值,会解决一些简单的应用问题,会证明一些简单的不等式。
19、了解函数的凹凸性及曲线拐点的定义,会求函数的凹凸区间及曲线的拐点。
20、会求曲线的渐近线,会描绘一些简单函数的图形。
1、理解原函数和不定积分的概念及性质。
2、熟练掌握不定积分的基本公式。
3、熟练掌握不定积分的换元积分法和分部积分法。
4、理解变上限积分函数的定义,掌握求变上限积分函数导数的方法。
5、理解定积分的概念和几何意义,掌握定积分的基本性质。
6、熟练掌握牛顿-莱布尼兹(Newton-Leibniz)公式,掌握定积分的换元法和分部积分法。
7、掌握定积分的微元法,会求平面图形的面积及平面图形绕坐标轴旋转的旋转体的体积。
8、理解无穷区间上有界函数的广义积分与有限区间上**函数的瑕积分的概念,掌握其计算方法。
1、理解空间直角坐标系及向量的概念,掌握向量的坐标表示法,会求向量的模、方向余弦。
2、掌握向量的线性运算、向量的数量积、向量积的计算方法,理解其几何意义。
3、熟练掌握二向量平行、垂直的条件。
4、会求平面的点法式方程、一般式方程、截距式方程。会判定两个平面位置关系。
5、了解直线的一般式方程,会求直线的对称式(点向式)方程、参数式方程。会判定两条直线的位置关系。
6、会判定直线与平面的位置关系。
1、理解二元函数的概念,会求一些简单二元函数的定义域。
2、了解二元函数的极限、连续的定义及其基本性质。
3、熟练掌握显函数的一阶、高阶偏导数的求法。
4、会求二元函数的极值,会用拉格朗日乘数法求条件极值。
5、熟练掌握二元函数全微分的求法。
6、熟练掌握二重积分的计算方法。
1、理解微分方程的定义及阶、解、通解、特解等概念。
2、熟练掌握可分离变量的微分方程、齐次微分方程及一阶线性微分方程的解法。
3、理解二阶常系数齐次线性微分方程解的性质及通解的结构。
4、熟练掌握二阶常系数齐次线性微分方程的解法。
1、理解无穷级数收敛、发散的概念。
2、理解级数收敛的必要条件和级数的主要性质。
4、熟练掌握正项级数的比值判别法,比较判别法。
5、理解幂级数的收敛半径、收敛区间及收敛域的定义。
6、熟练掌握求幂级数的收敛半径、收敛区间及收敛域的方法。
1、理解行列式的概念,掌握行列式的性质。
4、熟练掌握矩阵的线性运算及运算法则、矩阵的乘法及运算法则。
5、理解方阵可逆的概念和判定法则,掌握求可逆矩阵的逆矩阵的方法。
6、理解矩阵的秩的概念,掌握求矩阵秩的方法。
9、掌握齐次线性方程组有非零解的判定条件及解的结构,掌握非齐次线性方程组解的判定和结构。
10、熟练掌握线性方程组的解法。
1、理解随机**的概念,掌握**之间的关系和运算。
2、了解概率的统计定义,掌握概率的基本性质和概率的加法公式。
3、掌握古典概率的计算公式,会求一些**发生的概率。
4、理解****性的概念,能用**的**性计算概率。
5、理解随机变量的概念,会求一些简单随机变量的分布。
6、理解随机变量的数学期望及方差的概念,掌握数学期望和方差的基本性质,会求一些简单随机变量的数学期望和方差。
*注:本大纲对理论、概念等从高到低的要求是:理解,知道,了解;对方法、计算等从高到低的要求是:熟练掌握,掌握,会。
文章分享结束,复合函数求解析式和复合函数例题的**你都知道了吗?欢迎再次光临本站哦!
今天给各位分享复合函数求解析式的知识,其中也会对复合函数例题进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
专升本高数考试范围是怎么样的
1、专升本数学考试范围是:函数、极限与连续;导数与微分;中值定理与导数应用;原函数与不定积分概念、不定积分换元法、不定积分分部积分法;定积分及其应用;微分方程;空间解析几何向量代数;多元函数微分学;多元函数积分学;无穷级数。
2、高数一包括:高等数学、线性代数和概率统计;高等数学占60%,线性代数20%,概率论20%。
3、高数二包括:高等数学和线性代数;不考无穷级数、线面积分、概率统计。
4、专升本高数在出题上区别于普通高校的期末考试题及其他测试,也就是说每道题都只考单独的一个知识点,不具有综合性,题量大,但题目简单,只要你学会了一个知识点,就能保证会做一道题。
5、专升本数学所有考点分为8大模块:
6、第一模块:函数、极限和连续。包括四个内容:(1)高数主要研究对象–函数(2)研究工具–极限(3)无穷小量、无穷大量(4)函数的连续性。
7、第二模块:一元函数的微分学。重要内容:(1)导数与微分(2)微分中值定理与洛必达法则(3)一元函数求导(4)函数的单调性与极值。
8、第三模块:积分分为:定积分与不定积分。解不定积分或者定积分的方法:(1)直接法(2)分布积分法(3)换元法。
9、第四模块:常微分方程分为:一阶微分方程、高阶微分方程和二阶线性微分方程;一阶微分方程考的比较多。
10、第五模块:向量代数、空间解析几何。过渡章节,为后面学习二元函数的微积分打基础。
11、第六模块:多元函数的微分学。多元微分(多元函数求偏导)和(复合函数和隐函数的微分法)、(多元函数的极值应用)。
12、第七模块:多元函数积分学重点掌握二重积分和曲线积分。
13、第八模块:无穷极数工程中的近似计算会用到。包括:竖向极数和幂级数。
专升本函授高等数学讲解:函数、极限和连续的考点有哪些
高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。工科、理科、财经类研究生考试的基础科目。那么,专升本函授高等数学讲解:函数、极限和连续的考点有哪些?
本大纲适用于工学理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考生。
总要求考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方**确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。
函数的定义函数的表示法分段函数隐函数
幂函数指数函数对数函数三角函数反三角函数
(1)理解函数的概念。会求函数的表达式、定义域及函数值。会求分段函数的定义域、函数值,会作出简单的分段函数的图像。
(2)理解函数的单调性、奇偶性、有界性和周期性。
(3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。
(4)熟练掌握函数的四则运算与复合运算。
(5)掌握基本初等函数的性质及其图像。
(7)会建立简单实际问题的函数关系式。
唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理
函数在一点处极限的定义左、右极限及其与极限的关系趋于无穷时函数的极限函数极限的几何意义
无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的阶
(1)理解极限的概念(对极限定义中“”、“”、“”等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解极限的有关性质,掌握极限的四则运算法则。
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。
(4)熟练掌握用两个重要极限求极限的方法。
函数在一点处连续的定义左连续与右连续函数在一点处连续的充分必要条件函数的间断点及其分类
连续函数的四则运算复合函数的连续性反函数的连续性
有界性定理最大值与最小值定理介值定理(包括零点定理)
(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。
(2)会求函数的间断点及确定其类型。
(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。
自考/成考有疑问、不知道如何总结自考/成考考点内容、不清楚自考/成考报名当地政策,点击底部咨询官网,免费领取复习资料:https://www.87dh.com/xl/
重庆专升本数学考试范围
1、理解函数概念,知道函数的表示法;会求函数的定义域及函数值。
2、掌握函数的奇偶性、单调性、周期性、有界性。
3、理解复合函数与反函数的定义,会求单调函数的反函数。
4、掌握基本初等函数的性质与图像,了解初等函数的概念。
5、理解极限概念及性质,掌握极限的运算法则。
6、理解无穷小量与无穷大量的概念及两者的关系,掌握无穷小量的性质和无穷小量的比较。
7、了解夹逼准则与单调有界准则,掌握两个重要极限:
8、理解函数连续与间断的定义,理解函数间断点的分类,会利用连续性求极限,会判别函数间断点的类型。
9、理解闭区间上连续函数的有界性定理、最值定理、介值定理,并会用上述定理推证一些简单命题。
10、理解导数的定义及几何意义,会根据定义求函数的导数。
11、理解函数的可导与连续的关系。
12、熟练掌握基本初等函数的导数公式、导数的四则运算法则、复合函数求导法则、隐函数求导法、对数求导法及参数方程求导法,了解反函数的求导法则。
13、了解高阶导数的概念,熟练掌握初等函数的一阶和高阶导数的求法。
14、理解微分的定义、可微与可导的关系,了解微分的四则运算法则及一阶微分形式的不变性;会求函数的微分。
15、理解罗尔(Rolle)定理、拉格朗日中值(Lagrange)定理,了解柯西(Cauchy)中值定理和泰勒(Taylor)中值定理。会用罗尔定理证明方程根的存在性,会用拉格朗日中值定理证明一些简单不等式。
16、熟练掌握用洛必达(L’Hospital)法则求未定式的极限。
17、理解函数极值的概念、极值存在的必要条件及充分条件。
18、会求函数的单调区间和极值,会求函数的最大值与最小值,会解决一些简单的应用问题,会证明一些简单的不等式。
19、了解函数的凹凸性及曲线拐点的定义,会求函数的凹凸区间及曲线的拐点。
20、会求曲线的渐近线,会描绘一些简单函数的图形。
1、理解原函数和不定积分的概念及性质。
2、熟练掌握不定积分的基本公式。
3、熟练掌握不定积分的换元积分法和分部积分法。
4、理解变上限积分函数的定义,掌握求变上限积分函数导数的方法。
5、理解定积分的概念和几何意义,掌握定积分的基本性质。
6、熟练掌握牛顿-莱布尼兹(Newton-Leibniz)公式,掌握定积分的换元法和分部积分法。
7、掌握定积分的微元法,会求平面图形的面积及平面图形绕坐标轴旋转的旋转体的体积。
8、理解无穷区间上有界函数的广义积分与有限区间上**函数的瑕积分的概念,掌握其计算方法。
1、理解空间直角坐标系及向量的概念,掌握向量的坐标表示法,会求向量的模、方向余弦。
2、掌握向量的线性运算、向量的数量积、向量积的计算方法,理解其几何意义。
3、熟练掌握二向量平行、垂直的条件。
4、会求平面的点法式方程、一般式方程、截距式方程。会判定两个平面位置关系。
5、了解直线的一般式方程,会求直线的对称式(点向式)方程、参数式方程。会判定两条直线的位置关系。
6、会判定直线与平面的位置关系。
1、理解二元函数的概念,会求一些简单二元函数的定义域。
2、了解二元函数的极限、连续的定义及其基本性质。
3、熟练掌握显函数的一阶、高阶偏导数的求法。
4、会求二元函数的极值,会用拉格朗日乘数法求条件极值。
5、熟练掌握二元函数全微分的求法。
6、熟练掌握二重积分的计算方法。
1、理解微分方程的定义及阶、解、通解、特解等概念。
2、熟练掌握可分离变量的微分方程、齐次微分方程及一阶线性微分方程的解法。
3、理解二阶常系数齐次线性微分方程解的性质及通解的结构。
4、熟练掌握二阶常系数齐次线性微分方程的解法。
1、理解无穷级数收敛、发散的概念。
2、理解级数收敛的必要条件和级数的主要性质。
4、熟练掌握正项级数的比值判别法,比较判别法。
5、理解幂级数的收敛半径、收敛区间及收敛域的定义。
6、熟练掌握求幂级数的收敛半径、收敛区间及收敛域的方法。
1、理解行列式的概念,掌握行列式的性质。
4、熟练掌握矩阵的线性运算及运算法则、矩阵的乘法及运算法则。
5、理解方阵可逆的概念和判定法则,掌握求可逆矩阵的逆矩阵的方法。
6、理解矩阵的秩的概念,掌握求矩阵秩的方法。
9、掌握齐次线性方程组有非零解的判定条件及解的结构,掌握非齐次线性方程组解的判定和结构。
10、熟练掌握线性方程组的解法。
1、理解随机**的概念,掌握**之间的关系和运算。
2、了解概率的统计定义,掌握概率的基本性质和概率的加法公式。
3、掌握古典概率的计算公式,会求一些**发生的概率。
4、理解****性的概念,能用**的**性计算概率。
5、理解随机变量的概念,会求一些简单随机变量的分布。
6、理解随机变量的数学期望及方差的概念,掌握数学期望和方差的基本性质,会求一些简单随机变量的数学期望和方差。
*注:本大纲对理论、概念等从高到低的要求是:理解,知道,了解;对方法、计算等从高到低的要求是:熟练掌握,掌握,会。
文章分享结束,复合函数求解析式和复合函数例题的**你都知道了吗?欢迎再次光临本站哦!
原创文章,作者:Admin,如若转载,请注明出处:http://www.mingpinfang.com/185791.html